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The deformation models needed by
the steel industry

By K. N. Melton

British Steel, Swinden Technology Centre, Moorgate, Rotherham S60 3AR, UK

The steel supply chain generally comprises a steel producer, manufacturing semi-
finished products, and a steel user, manufacturing formed components. A review is
presented of the deformation models needed by the steel industry, considering the
current and expected future requirements of the end users. A trend that is expected
to accelerate is their increased use of automation. This imposes a tighter dimen-
sional tolerance, which requires, among other things, models that predict rolling
loads and physically based models being introduced, offering distinctive benefits
that will be discussed. A narrow distribution of mechanical properties is needed,
requiring techniques that link deformation parameters such as strain, time and tem-
perature, through microstructure models to property prediction, and this should
include toughness as well as yield strength. Being able to predict toughness at all
points in a rolled product would significantly reduce waste and costs associated with
destructive testing.

The need for lightweight designs is leading to wider application of high-strength
steels. Because of the requirements of lower cost and good weldability, the high
strengths are being achieved through leaner chemistries, using controlled thermome-
chanical processing, where the transformation from austenite needs to be incorpo-
rated into the models. This is a major difference between steel and aluminium.

Laser fabrication techniques are increasingly being used; these require high degrees
of flatness in the steel, including after it has been cut, where non-uniform residual
stress distribution can lead to distortion. Models that predict residual stresses are
needed, and, since the customer might buy the steel in a coil and uncoil it himself,
the residual stress model and data will need to be shared. Customers will become
more than recipients of steel; they will share in the knowledge embedded in the steel,
and the ability to do this, along the varying deformation processes used by the steel
industry, is a challenge for those developing the modelling techniques.

Keywords: deformation modelling; finite element; process control;
hot rolling; steel; through-process model

1. Introduction

The steel industry in the UK, probably in part because of the presence of large com-
panies such as British Steel, is traditionally viewed as a primary metal manufacturing
industry. With this perspective, the deformation models needed would be those that
made the processes used, such as hot rolling, more efficient: producing better quality
steel at lower cost. However, the steel industry is probably better viewed as a supply
chain, comprising, for example, a steel producer manufacturing semi-finished prod-
uct, a processor forming steel parts, and an equipment manufacturer, assembling
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Figure 1. (a) A three-dimensional perspective of a coupled model of the rolling of a steel section.
Because of symmetry, only the top half section is modelled. (b) End-on view of the local strains
during one of the pass sequences shown in (a).

steel parts, perhaps with those from other materials, maybe including a machining
operation. Although it remains vitally important to improve the modelling capability
of the deformation processes used in making semi-finished steel products, it will be
argued that we must, in developing these models, do so bearing in mind that in the
future they should have the capability of transferring data and knowledge along the
supply chain.
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In this paper, the deformation-modelling needs of this steel-industry supply chain
will also be discussed from the point of view of the current and expected future
requirements of the end user or customer. The reason for this choice is that if the
models add value to the customer, then they will benefit the industry as a whole.
After an overview of examples of deformation models currently used, some trends
in the use of steel and their consequence on the development of such models will be
described.

2. Deformation models used by the steel industry

(a) Finite-element models (FEMs)

The first FEM used in the steel industry was probably to model the elastic deflection
of a component under load. As computing power grew, more sophisticated models
became possible, and the plastic deformation during hot rolling of steel, including
friction effects at the rolls and temperature variations across the section, became
possible. Figure 1a shows the modelling of rolls and workpiece in the rolling of a
beam section, and figure 1b shows the locally predicted deformation strains across
the section during a single pass. Being able to model the metal flow enables the
roll pass sequence to be designed on the computer rather than in a trial and error
mode on the plant. As well as enabling the design to be done at lower cost, the
understanding of the process, which comes from trying to model it, more readily
allows process optimization. Reducing the number of passes needed to go from the
initial to the final shape has a significant influence on the cost of the product.

The analysis illustrated in figure 1a was done using a so-called coupled model,
where the forces causing the workpiece deformation are allowed to deflect the rolls.
Such techniques give increased accuracy of prediction, albeit at the expense of
increased computing power.

Currently available finite-element (FE) software will do most of the things the steel
industry needs. Future developments in the software will be incremental; however,
step changes in the effectiveness of the technique will be brought about by better
material data, such as accurate friction coefficients with or without oxide scale, and
constitutive models to feed into the FE package, and also by increased computing
power to make each run faster. Artificial intelligence systems will be used to short
cut a full FE analysis, particularly in designing rolling schedules within a product
family, where ‘rules’ of how the metal flows in a given situation can be built in. This
may not be quite as accurate as the full FEM, but could allow significantly faster
exploration of ‘what if?’ scenarios.

Figure 2a shows an FE calculation of the shape resulting from the compression
testing of a simple cylinder, and a comparison of the results of full FE calculations
with those from a trained neural network are shown in figure 2b, where it can be seen
that excellent agreement is obtained. However, the accuracy of the neural network
prediction depends on the size of the training data-set, as can be seen in figure 2c,
where a linear relationship is observed for large data subsets. If insufficient validation
data are used, then the errors can be large, and the prediction method becomes
unstable, the linear relation no longer being found. Within the linear range, the
trade-off is accuracy versus cost; the more data used to set up the network the more
accurate the result.
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Figure 2. (a) An FEM of the plastic strain during a compression test of a cylinder. Because
of symmetry, only a quarter of the cross-section is modelled. (b) A comparison of the shape
calculated using a full FEM with those of a neural network (NN) showing excellent agreement.
(c) The relationship between error in the NN prediction with the size of the data-set used to
train and validate the model.

(b) Microstructural models

One of the major developments in physical metallurgy over the last 50 years or
so has been the understanding of the relationship between the properties of a mate-
rial and its microstructural characteristics. The relationship between grain size and
yield strength, and precipitation hardening theories, all made major contributions.
A consequence of this understanding has been a strong drive to include microstruc-
tural parameters in the deformation models used. Rather than treating steel at the
macroscopic level as a homogeneous solid described by the constitutive equations
of a mathematician, efforts have been made to incorporate our knowledge of what
happens to the microstructure into the modelling of the deformation of steel. One
of the benefits resulting from this approach is the transferability of the model from
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Figure 3. (a) The measured grain-size distribution across a bar compared with that calculated
(b) from the process parameters. (c) The predicted grain-size distribution after adjusting the
pass sequence to achieve a more uniform grain-size distribution.

one particular rolling mill and steel composition to another. Purely adaptive models
are specific to the situation for which they were set up.

One factor, important to many customers who buy steel bar, is its machinabil-
ity. The economics of machining components from a bar can depend critically on
a high reproducible machining rate. Although grain size might not be considered a
primary parameter in influencing machinability, it can, nevertheless, be important.
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Figure 4. The flow stress at 900 ◦C as a function of holding time.

One customer experienced a problem with ‘chatter’: uneven machining around the
circumference of a bar. Microstructural examination demonstrated an uneven distri-
bution of grain size (figure 3a). The factors that control grain size are reasonably
well understood, so it is possible to include algorithms describing the grain size based
on experimentally determined parameters such as deformation strain, time, temper-
ature, etc. Figure 3b shows the prediction of grain size across a bar, inputting the
deformation history from the process used to produce the bar. It can be seen that
excellent agreement is obtained between the measured and predicted grain size. With
this level of understanding, then it is relatively straightforward, on the computer,
to make adjustments to the deformation pattern, to induce recrystallization across
the whole cross-section. A much more uniform grain-size product was predicted (fig-
ure 3c), and this slightly modified roll pass sequence was then implemented, quickly
solving the customer’s problem.

The evolution of the austenite state has a dramatic effect on the required loads
during the rolling process. Incorporating this evolution into a model of the rolling
process significantly improves its accuracy. During hot deformation, the grain size
is affected by repeated mechanical working and recrystallization. However, if the
time between successive deformation passes is too short, the steel does not necessar-
ily recrystallize. This affects not only the final austenite grain size (and, therefore,
product properties), but also the hot strength of the steel at the next pass, which
influences predictions of roll gaps, spread and also dimensional tolerance. Figure 4
shows the stress measured in a stress relaxation test on a C–Mn steel deformed to a
strain of 0.69 at 900 ◦C, plotted as a function of log time.† It can be seen that there
is a change of slope corresponding to the onset and completion of static recrystal-
lization. Ensuring that there is enough time between deformation passes, to allow
recrystallization always to occur, gives significantly reduced dimensional variation in
the product, as well as reducing work loads on the roll stands.

† Unpublished research at the University of Sheffield as part of a DTI Link Enhanced Materials
Programme, with British Steel and the University of Cambridge as partners.
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Figure 5. A prediction of the ferrite grain size and the prior austenite grain size at different
positions in the cross-section of a beam similar to that shown in figure 1b. The measured ferrite
grain sizes are shown for the same positions.

So far in the discussion, the microstructural evolution has taken place entirely in
the austenitic condition; in other words, the initial deformation temperature and the
rate of cooling during rolling never bring the steel into the transformation tempera-
ture range until deformation is complete. The final austenite grain size and the ferrite
grain size, to which it transforms, can be calculated from a combination of material
composition using a ‘carbon equivalent’ value, rolling parameters, including retained
strain, and cooling rates. Figure 5 shows the predicted austenite grain size at different
points across the section of a rolled beam, with the predicted ferrite grain size after
cooling and transforming, and this is compared with the measured ferrite grain size.
It can be seen that, although the predicted austenite grain size varies significantly
with position, the predicted ferrite grain size shows much less variation, and that
excellent agreement is obtained with the measurements. Adequate models exist to
predict the transformation to ferritic-based structures, at least for C–Mn steels, but
more work is needed for martensitic- or bainitic-containing microstructures. For cost
reduction reasons and for improved weldability, there is a drive to achieve the same
property combination with a leaner chemistry: a steel with a lower alloying content.
This requires other strengthening methods to be used, and one approach is to fin-
ish roll at lower temperatures, where the steel transforms during the deformation
process itself. More microstructural models are needed for this thermomechanical
rolling, and for situations where the transformation is subsequently to bainite or
martensite. In particular, techniques to predict the transformation microstructure
and the mechanical properties of the transformed product are needed.

Considerable waste occurs because of the need to take samples for mechanical
testing to confirm that the piece of steel has the properties specified by the customer.
As well as the time and cost of removing the material, machining the sample and
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doing the test, a relatively large amount of steel might have to be scrapped to take
out just a small sample. Clearly, if the steel producer can predict the properties, both
tensile and toughness (Charpie) to an accuracy that the customer will accept, then
the whole manufacturing process can be made more efficient. Such models should
include the property change in forming the final component, for example the increase
in strength in forming plate into pipe, and will ultimately include predictions of the
properties of the weld.

Another area where our models are currently not sufficiently well developed is that
of the dynamics of precipitate dissolution and reprecipitation. We need to be able
to predict the grain growth during heating to the hot rolling temperature as some
of the precipitates stabilizing the grains dissolve, and, similarly, the inhibiting effect
on grain growth as the workpiece cools during rolling and the precipitates reform.

(c) Constitutive models

The FE packages described in the previous section require information on the
stress–strain behaviour of the steel at the temperature and strain rate of the deforma-
tion. Thermomechanical simulators can be used, for example, to do hot compression
tests at temperatures from ca. 1200 ◦C down to 700 ◦C at strain rates typically in
the range 0.1–10 s−1. However, during hot rolling of steel, dynamic recrystallization
can occur during the deformation, grain growth takes place between rolling passes
and a variety of other variables are introduced that are not present in the simula-
tion. Consequently, the approach usually taken is to have some form of viscoplastic
constitutive equation defining the flow stress in terms of material constants (a recent
paper by Farrugia et al . (1998) used 12), and these constants are then identified from
material data.

(d) Crystallographic texture

For many steel products, texture effects are relatively unimportant. They are usu-
ally ignored for the deformation models used for the hot rolling of carbon steel
sections for example. However, in the grades of ultra-low carbon and interstitial-free
strip steels being introduced into the automotive market, they can be important.
Figure 6 shows the dependence of the anisotropy factor r, the ratio between longi-
tudinal and transverse strains in metal forming, as a function of the fraction v of
grains near the {111} orientation, a measure of texture. The anisotropy influences
the formability of these steels, which is a key factor in their application. The data
demonstrate that more attention must be given to understanding and predicting
texture evolution during deformation and heat treatment for these new strip grades.

3. Trends in the use of steel

A significant recent trend in the application of steel, which is expected to increase in
importance in the future, is the use of automatic equipment to handle and process
it. Pick and place robots have limited capability of handling variation in a product’s
dimensions. If a component is made from sheet steel by bending in an automated
press, then any variation in yield strength or in thickness of the steel will be reflected
in variation in the springback after the bending load is removed, or, in other words,
it will result in variation in the bent angle of the formed component. A manual
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Figure 7. The modelled austenite grain-size evolution during a typical strip rolling schedule.

assembly operation might be able to adjust for this, a robotic one might not. There
is, thus, a strong drive to reduce variation.

The process control models used to operate a rolling mill have mostly been black
box or adaptive. A measurement is made of a product parameter, e.g. thickness
of a coil, and compared with the requirement. A process parameter, e.g. rolling
load, is then adjusted and the cycle repeated until the product requirement is being
met within the control limits. However, significant improvements have been made
recently by including prediction of the grain size, based on deformation history, and
a knowledge of the relationship between grain size and flow stress to predicted rolling
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Figure 8. The error distribution in predicted set-up load for a purely adaptive model compared
with microstructural model (MetModel) including adaption.

loads. Figure 7 shows a prediction of the austenite grain size during hot rolling on
a strip mill, and figure 8 shows the error in predicted set-up load for many different
trials, comparing a purely adaptive ‘black-box’ model with one that includes the
microstructural model. Clearly, the latter gives a much tighter distribution around
the zero-error position. Better prediction of rolling load gives less variation in the
thickness of the product, exactly the attribute desired by the customer. Even more
significant is the fact that the first coil of a new run is used as a ‘training’ coil
by the adaptive model, and might not be within specification, whereas the model
incorporating microstructural prediction results in the first coils of a run being within
the acceptable dimensional range.

Not having to scrap or downgrade the first coil is a tangible success from a phys-
ically based model, and points the way to the future. The quality of products will
be improved by using process control models that incorporate as much of our phys-
ical metallurgy knowledge as possible. This drive towards physically based models
will be facilitated by increasing computer power, enabling the complexity of such
models to be addressed directly, rather than having to make expedient simplifying
assumptions.

Laser welding is another process increasing in importance because of its speed
and reliability. A filler wire is not always used, so this requires a high degree of fit
when two components to be welded together are pre-assembled. Any gap or out-
of-plane mismatch cannot be accommodated. In manufacturing components from
sheets of steel, the steel is often sold as a semi-finished coil, which is then uncoiled,
flattened and cut to size. Uncontrolled residual stresses in the steel can lead to severe
distortion on cutting, as can be seen on the left in figure 9, whereas on the right a
similar steel processed to control the residual stress is shown, the pieces remaining
flat after cutting. Clearly, unless the strip stays flat after slitting, it cannot be butt
welded with lasers without an additional operation.

Figure 10 shows an FEM of the roller-levelling process, where the input material
has an edge wave as a consequence of the roll gap not having been parallel in a
previous rolling operation. In rolling strip, the metal flow is predominantly longitu-
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Figure 9. The severe distortion on slitting sheet containing non-uniform residual stress (left)
with the minimal distortion (right) when the processing is controlled to give uniform residual
stress.

plate levelling - finite element model

ingoing shape and
edge wave

the plate is levelled as it passes between the
top and bottom rolls of the levelling machine

outgoing shape with
residual stress

Figure 10. The roller-levelling process.

dinal, so that a non-parallel roll gap results in one edge being elongated more than
the other and produces the wave. In a roller-leveller, the top set of rolls lies in the
‘valleys’ of the bottom set, subjecting the steel strip to alternating reverse bending as
it passes through. The resulting material on the exit side of the roller-leveller (shown
in figure 10), is flat; however, the residual stress represented by the different shading
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Figure 11. Tool and blank set-up for simulation of a press forming process.

contours varies along the length and width of the strip. This could lead to distortion
on cutting, when some of the constraints are removed. Obtaining flat sheet, which
does not distort during further processing, is potentially an iterative process between
varying the rolling conditions (reducing or eliminating the ingoing edge wave in fig-
ure 10) and varying the roller-leveller set-up, or the number of roller-leveller passes.
Increasing the plastic deformation during the reverse bending results in more uniform
residual stress from point to point along the surface. Modelling the residual stresses
enables the development of an understanding of the influence of all the variables on
the residual stress distribution after roller-levelling, and this iteration can be done on
the computer. This information can then be used to process strip with a controlled
residual stress, resulting in product that does not distort on slitting.

Steel car-body parts are often made by pressing from sheet steel, and FEMs can
be used to simulate the press forming process. Figure 11 shows the tool and blank
set-up prior to such a simulation. The local strains experienced during the forming
operation can be predicted, and then compared with a formability limit model to
evaluate whether such a limit is close, in which case, splitting can potentially occur
and the die or material might need to be modified. It is interesting to note that
the starting FE mesh in figure 11 is uniform; a homogeneous material is assumed
because the knowledge of the actual material condition, for example residual stress
distribution from prior processing, is not always available. In the examples shown in
figures 10 and 11, the modelling was actually done by British Steel, but in practice,
the roller-levelling could be done at an independent steel service centre and the final
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Figure 12. A schematic illustration of an adaptive model for process control.

pressing at an auto supply company. The design of the steel component itself, as well
as the process to make it, can be improved if the processing knowledge embedded in
the steel can be transferred along the supply chain. In other words, greater accuracy
of the forming-limit prediction will be achieved if the effects of prior deformation
history can be included. This requires that the models used and the software they
run on should be common along the chain; some of the issues in implementing this
are discussed in the next section.

4. Through-process model

Deformation models, used for process control, have to run in real time and need to
handle minor variability in feedstock composition and temperature. Figure 12 illus-
trates, schematically, an adaptive process control model, where an output such as
thickness is measured, compared with a desired value in the control system, which
then pulls some ‘lever’, changing the process to move the measured value closer to
the desired value. Physically based models are often too slow for real time control,
but the inexorable increase in affordable computing power might soon allow this. In
the meantime, artificial intelligence, such as neural networks, can provide a bridge
between a purely adaptive model and a physically based one, as illustrated in fig-
ure 13.

So far we have only discussed the control of a single deformation process in isola-
tion. Figure 14 represents two sequential steps, such as a hot rolling mill feeding a
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physically based model

neural network

process
e.g.

cold rolling

Figure 13. A schematic illustration of the use of a neural network to apply features of a
physically based model to direct process control.

cold mill downstream. We know that even the crude transfer of data between these
two processes can result in better control. Running the coils through the cold mill
in the same sequence they came off the hot mill results in better final gauge control.
Maintaining the same sequence means that any slow drift in any output measure of
the hot mill is also seen by the cold mill control as a slow drift. Putting the coils
through the cold mill in a random sequence can break down the slow drift into a series
of uncoordinated steps, making it more difficult for the control system to respond.

However, the deformation models used are generally not capable of being linked. In
processing control terms, we are where the computer industry was 15 years ago. We
have not standardized on the control equivalent of IBM versus Macintosh, we still use
different incompatible software, and no one seems to have dreamed of an enterprise-
wide Intranet. Fortunately for the computer industry, the increase in performance
at reduced cost has meant that the user has been prepared to scrap the computer
bought in 1983 and now has a network solution. In fact, those using a PC then are
probably on their fourth or fifth machine by now.
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hot rolling
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data

Figure 14. A schematic illustration of an upstream and a downstream process with adaptive
control. Less variation in the output of the downstream process is obtained if data can be
transferred from upstream.

The steel industry is capital intensive—too capital intensive. It cannot afford to
rip out process control systems as better ones come along; the expected lifetime is
certainly more than three years. Consequently, I believe we need to have a vision for
a through-process model of the future, such that we move towards it. In the case of
residual stresses in sheet, described above, this was relatively straightforward. The
software industry has moved towards standard packages for FE analysis, so compa-
nies along the supply chain can agree on such a package and, then, in a partnering
relationship, agree to share the subroutines for, for example, microstructural control.

There has not been such standardization among the manufacturers of rolling mills
and their process control systems. In many ways, we are where the PC industry was
in 1983, with proprietary closed-architecture black-box systems. Sharing the defor-
mation models, perhaps within a partnering relationship, might be a way forward,
and this has some profound implications for the steel industry, which is much more
fragmented than for aluminium, in the sense that no single company has double-digit
market share.

Improved accuracy of the modelling prediction can be obtained not only by linking
the upstream and downstream deformation models, as described above, but also by
linking some of the microstructural models going back as far as the as-cast structure.
For example, the strain distribution (which could be used to predict microstructure)
across the section shown in figure 1b was calculated assuming uniform starting mate-
rial. Some modelling is done of the segregation pattern across a cast billet. This local
compositional variation could be included in the hot deformation model, so that the
chemical composition variation across the section, coming from the cast structure,
as well as the deformation strain during rolling, is used to predict local properties.
Clearly, this is adding complexity, but if local predictions of properties are needed,
again their accuracy can be improved.
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The modelling approaches outlined in this paper are mostly macroscopic, describ-
ing volumes of material in the range 0.01–0.1 m3! Discontinuities in the structure
have only been considered at the grain-size level. Some models describe the deforma-
tion behaviour at the quantum mechanical atomistic/molecular level, so it is relevant
to ask whether the steel industry needs such models to be further developed. In my
view, the answer is yes, although we will probably never model the volume of steel
shown in figure 1a using first-principle equations describing each atom, even if com-
puting power allows it. However, one of the arguments presented in this paper is
the need to link the models and transfer the data from the upstream to the down-
stream process. At the microstructural level, a dislocation present in the steel on
leaving the hot mill will probably still exist on entering the cold mill. Describing
the deformation behaviour using models based on dislocation dynamics, has, at least
intuitively, the capability of providing these links and enabling the transfer. Fur-
thermore, we already know that the accuracy of the models currently used generally
increases as they become physically based. Consequently, the constitutive equations
used will increasingly be from first principles rather than with artificial-intelligence-
generated coefficients. At this point it is not clear in detail how ab initio modelling
will influence the deformation models used to control a steel mill, but I have every
expectation that these control models will benefit from the ab initio studies. It might
be the next generation of modellers that implements them, but such fundamental
work at universities should be encouraged.

The use of process control data to predict the properties of steel can be projected to
a vision for the next century. Some device will be automatically put on each piece of
steel made. The device will act like a bar code, all the process control data embedded
in the manufacture of that piece of steel will be captured, and the customer will have
a hand-held device, the equivalent of a bar code reader, attached to a small computer,
which will tell him all the specific property information predicted from deformation
models. No mechanical testing will be done. The implications of such a vision on the
need to link the deformation models are profound.

5. Summary

The deformation models needed by the steel industry in the longer term can be
summarized as follows.

(1) FE analysis software is fairly mature. However, significant advances are to be
expected from much better material property data to feed into the models.

(2) Models for predicting the microstructure after deformation, and, through the
microstructure, the mechanical properties, are starting to be successful for met-
allurgically simple cases, e.g. microstructural evolution during austenitic rolling
of C–Mn steels. These models need to be developed further and extended to
more complex steels, in particular, to model the transformation from austen-
ite, either after or during the deformation process itself. Adequate models to
predict toughness do not yet exist.

(3) Physically based models need to be incorporated into the process-control sys-
tems used to manufacture steel, since they generally lead to better control.
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Where the model runs too slowly to do on-line control directly, artificial-
intelligence systems can be developed, which are fast enough to operate in
real time yet allow many of the benefits of the physically based model to be
incorporated.

(4) The development of through-process models that allow the flow of knowl-
edge and data through the various process steps will lead to major long-term
improvements. Some limited linking of the models at the steel finishing end is
already happening. However, the steel industry and its equipment and process
control suppliers need to rethink the way the models are developed to ensure
that they are capable of migration towards an integrated through-process model
in the longer term.
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